Levelling-Up

Basic Mathematics

Logarithms

Robin Horan

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of logarithms.

Copyright © 2000 rhoran@plymouth.ac.uk Last Revision Date: January 16, 2001

Table of Contents

1. Logarithms
2. Rules of Logarithms
3. Logarithm of a Product
4. Logarithm of a Quotient
5. Logarithm of a Power
6. Use of the Rules of Logarithms
7. Quiz on Logarithms
8. Change of Bases

Solutions to Quizzes
Solutions to Problems

1. Logarithms (Introduction)

Let a and N be positive real numbers and let $N=a^{n}$. Then n is called the logarithm of N to the base a. We write this as

$$
n=\log _{a} N
$$

Examples 1
(a) Since $16=2^{4}$, then $4=\log _{2} 16$.
(b) Since $81=3^{4}$, then $4=\log _{3} 81$.
(c) Since $3=\sqrt{9}=9^{\frac{1}{2}}$, then $1 / 2=\log _{9} 3$.
(d) Since $3^{-1}=1 / 3$, then $-1=\log _{3}(1 / 3)$.

Exercise

Use the definition of logarithm given on the previous page to determine the value of x in each of the following.

$$
\begin{array}{ll}
1 . & x=\log _{3} 27 \\
2 . & x=\log _{5} 125 \\
3 . & \\
\text { 4. } & x=\log _{2}(1 / 4) \\
5 . & \\
5=\log _{x}(16) \\
5 . & \\
\text { 4. } & \log _{2} x
\end{array}
$$

2. Rules of Logarithms

Let a, M, N be positive real numbers and k be any number. Then the following important rules apply to logarithms.

$$
\begin{aligned}
& \text { 1. } \log _{a} M N=\log _{a} M+\log _{a} N \\
& \text { 2. } \quad \log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \\
& \text { 3. } \quad \log _{a}\left(m^{k}\right)=k \log _{a} M \\
& \text { 4. } \log _{a} a=1 \\
& \text { 5. } \log _{a} 1=0
\end{aligned}
$$

3. Logarithm of a Product

1. \longleftarrow Proof that $\log _{a} M N=\log _{a} M+\log _{a} N$.

Examples 2
(a) $\log _{6} 4+\log _{6} 9=\log _{6}(4 \times 9)=\log _{6} 36$.

If $x=\log _{6} 36$, then $6^{x}=36=6^{2}$.
Thus $\log _{6} 4+\log _{6} 9=2$.
(b) $\log _{5} 20+\log _{4}\left(\frac{1}{4}\right)=\log _{5}\left(20 \times \frac{1}{4}\right)$.

Now $20 \times \frac{1}{4}=5$ so $\log _{5} 20+\log _{4}\left(\frac{1}{4}\right)=\log _{5} 5=1$.

Quiz. To which of the following numbers does the expression $\log _{3} 15+\log _{3} 0 \cdot 6$ simplify?
(a) 4
(b) 3
(c) 2
(d) 1

4. Logarithm of a Quotient

1. \longleftarrow Proof that $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$.

Examples 3

(a) $\log _{2} 40-\log _{2} 5=\log _{2}\left(\frac{40}{5}\right)=\log _{2} 8$.

If $x=\log _{2} 8$ then $2^{x}=8=2^{3}$, so $x=3$.
(b) If $\log _{3} 5=1.465$ then we can find $\log _{3} 0 \cdot 6$.

Since $3 / 5=0 \cdot 6$, then $\log _{3} 0 \cdot 6=\log _{3}\left(\frac{3}{5}\right)=\log _{3} 3-\log _{3} 5$.
Now $\log _{3} 3=1$, so that $\log _{3} 0 \cdot 6=1-1 \cdot 465=-0 \cdot 465$

Quiz. To which of the following numbers does the expression $\log _{2} 12-\log _{2}\left(\frac{3}{4}\right) \quad$ simplify?
(a) 0
(b) 1
(c) 2
(d) 4

5. Logarithm of a Power

1. \longleftarrow Proof that $\log _{a}\left(m^{k}\right)=k \log _{a} M$

Examples 4
(a) Find $\log _{10}(1 / 10000)$. We have $10000=10^{4}$, so $1 / 10000=$ $1 / 10^{4}=10^{-4}$.
Thus $\log _{10}(1 / 10000)=\log _{10}\left(10^{-4}\right)=-4 \log _{10} 10=-4$, where we have used rule 4 to write $\log _{10} 10=1$.
(b) Find $\log _{36} 6$. We have $6=\sqrt{36}=36^{\frac{1}{2}}$.

Thus $\log _{36} 6=\log _{36}\left(36^{\frac{1}{2}}\right)=\frac{1}{2} \log _{36} 36=\frac{1}{2}$.

Quiz. If $\log _{3} 5=1 \cdot 465$, which of the following numbers is $\log _{3} 0 \cdot 04$?
(a) -2.930
(b) -1.465
(c) -3.465
(d) 2.930

6. Use of the Rules of Logarithms

In this section we look at some applications of the rules of logarithms.

Examples 5

(a) $\log _{4} 1=0$.
(b) $\log _{10} 10=1$.
(c) $\log _{10} 125+\log _{10} 8=\log _{10}(125 \times 8)=\log _{10} 1000$ $=\log _{10}\left(10^{3}\right)=3 \log _{10} 10=3$.
(d) $2 \log _{10} 5+\log _{10} 4=\log _{10}\left(5^{2}\right)+\log _{10} 4=\log _{10}(25 \times 4)$

$$
=\log _{10} 100=\log _{10}\left(10^{2}\right)=2 \log _{10} 10=2 .
$$

(e) $3 \log _{a} 4+\log _{a}(1 / 4)-4 \log _{a} 2=\log _{a}\left(4^{3}\right)+\log _{a}(1 / 4)-\log _{a}\left(2^{4}\right)$
$=\log _{a}\left(4^{3} \times \frac{1}{4}\right)-\log _{a}\left(2^{4}\right)=\log _{a}\left(4^{2}\right)-\log _{a}\left(2^{4}\right)$
$=\log _{a} 16-\log _{a} 16=0$.

Exercise

Use the rules of logarithms to simplify each of the following.

1. $3 \log _{3} 2-\log _{3} 4+\log _{3}\left(\frac{1}{2}\right)$
2. $3 \log _{10} 5+5 \log _{10} 2-\log _{10} 4$
3. $2 \log _{a} 6-\left(\log _{a} 4+2 \log _{a} 3\right)$
4. $5 \log _{3} 6-\left(2 \log _{3} 4+\log _{3} 18\right)$
5. $3 \log _{4}(\sqrt{3})-\frac{1}{2} \log _{4} 3+3 \log _{4} 2-\log _{4} 6$

7. Quiz on Logarithms

In each of the following, find x.
Begin Quiz

1. $\log _{x} 1024=2$
(a) 2^{3}
(b) 2^{4}
(c) 2^{2}
(d) 2^{5}
2. $x=\left(\log _{a} \sqrt{27}-\log _{a} \sqrt{8}-\log _{a} \sqrt{125}\right) /\left(\log _{a} 6-\log _{a} 20\right)$
(a) 1
(b) 3
(c) $3 / 2$
(d) $-2 / 3$
3. $\left.\log _{c}(10+x)-\log _{c} x=\log _{c} 5\right)$
(a) 2.5
(b) 4.5
(c) 5.5
(d) 7.5

End Quiz

8. Change of Bases

There is one other rule for logarithms which is extremely useful in practice. This relates logarithms in one base to logarithms in a different base. Most calculators will have, as standard, a facility for finding logarithms to the base 10 and also for logarithms to base e (natural logarithms). What happens if a logarithm to a different base, for example 2 , is required? The following is the rule that is needed.

$$
\log _{a} c=\log _{a} b \times \log _{b} c
$$

$1 . \longleftarrow$ Proof of the above rule

The most frequently used form of the rule is obtained by rearranging the rule on the previous page. We have

$$
\log _{a} c=\log _{a} b \times \log _{b} c \quad \text { so } \quad \log _{b} c=\frac{\log _{a} c}{\log _{a} b}
$$

Examples 6

(a) Using a calculator we find that $\log _{10} 3=0 \cdot 47712$ and $\log _{10} 7=0 \cdot 84510$. Using the above rule,

$$
\log _{3} 7=\frac{\log _{10} 7}{\log _{10} 3}=\frac{0 \cdot 84510}{0 \cdot 47712}=1 \cdot 77124
$$

(b) We can do the same calculation using instead logs to base e. Using a calculator, $\log _{e} 3=1 \cdot 09861$ and $\log _{e} 7=1 \cdot 94591$. Thus

$$
\log _{3} 7=\frac{\ln 7}{\ln 3}=\frac{1 \cdot 94591}{1 \cdot 09861}=1 \cdot 77125
$$

The calculations have all been done to five decimal places, which explains the slight difference in answers.
(c) Given only that $\log _{10} 5=0 \cdot 69897$ we can still find $\log _{2} 5$, as follows. First we have $2=10 / 5$ so

$$
\begin{aligned}
\log _{10} 2 & =\log _{10}\left(\frac{10}{5}\right) \\
& =\log _{10} 10-\log _{10} 5 \\
& =1-0 \cdot 69897 \\
& =0 \cdot 30103 .
\end{aligned}
$$

Then

$$
\log _{2} 5=\frac{\log _{10} 5}{\log _{10} 2}=\frac{0 \cdot 69897}{0 \cdot 30103}=2 \cdot 32193 .
$$

Solutions to Quizzes

Solution to Quiz:

Using rule 1 we have

$$
\begin{aligned}
& \log _{3} 15+\log _{3} 0 \cdot 6=\log _{3}(15 \times 0 \cdot 6)=\log _{3} 9 \\
& \text { But } 9=3^{2} \text { so } \\
& \qquad \log _{3} 15+\log _{3} 0 \cdot 6=\log _{3} 3^{2}=2 .
\end{aligned}
$$

End Quiz

Solution to Quiz:

Using rule 2 we have

$$
\log _{2} 12-\log _{2}\left(\frac{3}{4}\right)=\log _{2}\left(12 \div \frac{3}{4}\right)
$$

Now we have $12 \div \frac{3}{4}=12 \times \frac{4}{3}=\frac{12 \times 4}{3}=16$.
Thus $\log _{2} 12-\log _{2}\left(\frac{3}{4}\right)=\log _{2} 16=\log _{2} 2^{4}$.
If $x=\log _{2} 2^{4}$, then $2^{x}=2^{4}$, so $x=4$.

Solution to Quiz:

Note that

$$
0 \cdot 04=4 / 100=1 / 25=1 / 5^{2}=5^{-2}
$$

Thus

$$
\log _{3} 0 \cdot 04=\log _{3}\left(5^{-2}\right)=-2 \log _{3} 5 .
$$

Since $\log _{3} 5=1 \cdot 465$, we have

$$
\log _{3} 0 \cdot 05=-2 \times 1 \cdot 465=-2.930 .
$$

End Quiz

Solutions to Problems

Problem 1.
Since

$$
x=\log _{3} 27
$$

then, by the definition of a logarithm, we have

$$
3^{x}=27
$$

But $27=3^{3}$, so we have

$$
3^{x}=27=3^{3}
$$

giving

$$
x=3
$$

Problem 2.
Since $x=\log _{25} 5$ then, by the definition of a logarithm,

$$
25^{x}=5
$$

Now

$$
5=\sqrt{25}=25^{\frac{1}{2}}
$$

so that

$$
25^{x}=5=25^{\frac{1}{2}}
$$

From this we see that $x=1 / 2$.

Problem 3.
Since $x=\log _{2}(1 / 4)$, then, by the definition of a logarithm,

$$
2^{x}=1 / 4=1 /\left(2^{2}\right)=2^{-2}
$$

Thus $x=-2$.

Problem 4.
Since $2=\log _{x}(16)$ then, by the definition of logarithm,

$$
x^{2}=16=4^{2}
$$

Thus

$$
x=4
$$

Problem 5.
Since $3=\log _{2} x$, by the definition of logarithm, we must have

$$
2^{3}=x
$$

Thus $x=8$.

Problem 1.

Let $m=\log _{a} M$ and $n=\log _{a} N$, so, by definition, $M=a^{m}$ and $N=a^{n}$. Then

$$
M N=a^{m} \times a^{n}=a^{m+n}
$$

where we have used the appropriate rule for exponents. From this, using the definition of a logarithm, we have

$$
m+n=\log _{a}(M N)
$$

But $m+n=\log _{a} M+\log _{a} N$, and the above equation may be written

$$
\log _{a} M+\log _{a} N=\log _{a}(M N),
$$

which is what we wanted to prove.

Problem 1.

As before, let $m=\log _{a} M$ and $n=\log _{a} N$. Then $M=a^{m}$ and $N=a^{n}$. Now we have

$$
\frac{M}{N}=\frac{a^{m}}{a^{n}}=a^{m-n},
$$

where we have used the appropriate rule for indices. By the definition of a logarithm, we have

$$
m-n=\log _{a}\left(\frac{M}{N}\right) .
$$

From this we are able to deduce that

$$
\log _{a} M-\log _{a} N=m-n=\log _{a}\left(\frac{M}{N}\right) .
$$

Problem 1.

Let $m=\log _{a} M$, so $M=a^{m}$. Then

$$
M^{k}=\left(a^{m}\right)^{k}=a^{m k}=a^{k m}
$$

where we have used the appropriate rule for indices. From this we have, by the definition of a logarithm,

$$
k m=\log _{a}\left(M^{k}\right) .
$$

But $m=\log _{a} M$, so the last equation can be written

$$
k \log _{a} M=k m=\log _{a}\left(M^{k}\right),
$$

which is the result we wanted.

Problem 1. First of all, by rule 3 , we have $3 \log _{3} 2=\log _{3}\left(2^{3}\right)=$ $\log _{3} 8$. Thus the expression becomes
$\log _{3} 8-\log _{3} 4+\log _{3}\left(\frac{1}{2}\right)=\left[\log _{3} 8+\log _{3}\left(\frac{1}{2}\right)\right]-\log _{3} 4$.
Using rule 1, the first expression in the [] brackets becomes

$$
\log _{3}\left(8 \times \frac{1}{2}\right)=\log _{3} 4
$$

The expression then simplifies to

$$
\log _{3} 4-\log _{3} 4=0 .
$$

Problem 2.

First we use rule 3:

$$
3 \log _{10} 5=\log _{10}\left(5^{3}\right)
$$

and

$$
5 \log _{10} 2=\log _{10}\left(2^{5}\right)
$$

Thus

$$
3 \log _{10} 5+5 \log _{10} 2=\log _{10}\left(5^{3}\right)+\log \left(2^{5}\right)=\log _{10}\left(5^{3} \times 2^{5}\right)
$$

where we have used rule 1 to obtain the right hand side. Thus

$$
3 \log _{10} 5+5 \log _{10} 2-\log _{10} 4=\log _{10}\left(5^{3} \times 2^{5}\right)-\log _{10} 4
$$

and, using rule 2 , this simplifies to

$$
\log _{10}\left(\frac{5^{3} \times 2^{5}}{4}\right)=\log _{10}\left(10^{3}\right)=3 \log _{10} 10=3
$$

Problem 3.

Dealing first with the expression in brackets, we have

$$
\log _{a} 4+2 \log _{a} 3=\log _{a} 4+\log _{a}\left(3^{2}\right)=\log _{a}\left(4 \times 3^{2}\right)
$$

where we have used, in succession, rules 3 and 2 . Now

$$
2 \log _{a} 6=\log _{a}\left(6^{2}\right)
$$

so that, finally, we have

$$
\begin{aligned}
2 \log _{a} 6-\left(\log _{a} 4+2 \log _{a} 3\right) & =\log _{a}\left(6^{2}\right)-\log _{a}\left(4 \times 3^{2}\right) \\
& =\log _{a}\left(\frac{6^{2}}{4 \times 3^{2}}\right) \\
& =\log _{a} 1 \\
& =0 .
\end{aligned}
$$

Problem 4.

Dealing first with the expression in brackets we have

$$
2 \log _{3} 4+\log _{3} 18=\log _{3}\left(4^{2}\right)+\log _{3} 18=\log _{3}\left(4^{2} \times 18\right)
$$

where we have used rule 3 first, and then rule 1 . Now, using rule 3 on the first term, followed by rule 2 , we obtain

$$
\begin{aligned}
5 \log _{3} 6-\left(2 \log _{3} 4+\log _{3} 18\right) & =\log _{3}\left(6^{5}\right)-\log _{3}\left(4^{2} \times 18\right) \\
& =\log _{3}\left(\frac{6^{5}}{4^{2} \times 18}\right) \\
& =\log _{3}\left(\frac{2^{5} \times 3^{5}}{4^{2} \times 2 \times 9}\right) \\
& =\log _{3}\left(3^{3}\right) \\
& =3 \log _{3} 3=3,
\end{aligned}
$$

since $\log _{3} 3=1$.

Problem 5.
The first thing we note is that $\sqrt{3}$ can be written as $3^{\frac{1}{2}}$. We first simplify some of the terms. They are

$$
\begin{gathered}
3 \log _{4} \sqrt{3}=3 \log _{4}\left(3^{\frac{1}{2}}\right)=\frac{3}{2} \log _{4} 3 \\
\log _{4} 6=\log _{4}(2 \times 3)=\log _{4} 2+\log _{4} 3
\end{gathered}
$$

Putting all of this together:

$$
\begin{aligned}
3 \log _{4}(\sqrt{3}) & -\frac{1}{2} \log _{4} 3+3 \log _{4} 2-\log _{4} 6 \\
& =\frac{3}{2} \log _{4} 3-\frac{1}{2} \log _{4} 3+3 \log _{4} 2-\left(\log _{4} 2+\log _{4} 3\right) \\
& =\left(\frac{3}{2}-\frac{1}{2}-1\right) \log _{4} 3+(3-1) \log _{4} 2 \\
& =2 \log _{4} 2=\log _{4}\left(2^{2}\right)=\log _{4} 4=1
\end{aligned}
$$

Problem 1.

Let $x=\log _{a} b$ and $y=\log _{b} c$. Then, by the definition of logarithms,

$$
a^{x}=b \quad \text { and } \quad b^{y}=c .
$$

This means that

$$
c=b^{y}=\left(a^{x}\right)^{y}=a^{x y},
$$

with the last equality following from the laws of indices. Since $c=a^{x y}$, by the definition of logarithms this means that

$$
\log _{a} c=x y=\log _{a} b \times \log _{b} c .
$$

